Link Search Menu Expand Document Documentation Menu

异常结果映射

当您在“自定义结果索引”窗格中选择“启用自定义结果索引”框时,异常检测插件会将结果保存到您选择的索引中。当异常检测器未检测到异常时,结果格式如下:

{
  "detector_id": "kzcZ43wBgEQAbjDnhzGF",
  "schema_version": 5,
  "data_start_time": 1635898161367,
  "data_end_time": 1635898221367,
  "feature_data": [
    {
      "feature_id": "processing_bytes_max",
      "feature_name": "processing bytes max",
      "data": 2322
    },
    {
      "feature_id": "processing_bytes_avg",
      "feature_name": "processing bytes avg",
      "data": 1718.6666666666667
    },
    {
      "feature_id": "processing_bytes_min",
      "feature_name": "processing bytes min",
      "data": 1375
    },
    {
      "feature_id": "processing_bytes_sum",
      "feature_name": "processing bytes sum",
      "data": 5156
    },
    {
      "feature_id": "processing_time_max",
      "feature_name": "processing time max",
      "data": 31198
    }
  ],
  "execution_start_time": 1635898231577,
  "execution_end_time": 1635898231622,
  "anomaly_score": 1.8124904404395776,
  "anomaly_grade": 0,
  "confidence": 0.9802940756605277,
  "entity": [
    {
      "name": "process_name",
      "value": "process_3"
    }
  ],
  "model_id": "kzcZ43wBgEQAbjDnhzGF_entity_process_3",
  "threshold": 1.2368549346675202
}

响应正文字段

字段 描述
detector_id 用于识别检测器的唯一 ID。
schema_version 结果索引的映射版本。
data_start_time 聚合数据检测范围的起始时间。
data_end_time 聚合数据检测范围的结束时间。
feature_data data_start_timedata_end_time 之间聚合数据点的数组。
execution_start_time 检测器在特定运行中产生异常结果的实际开始时间。此开始时间包括您可以设置以延迟数据收集的窗口延迟参数。窗口延迟是 execution_start_timedata_start_time 之间的差值。
execution_end_time 检测器在特定运行中产生异常结果的实际结束时间。
anomaly_score 表示异常的相对严重程度。分数越高,数据点越异常。
anomaly_grade anomaly_score 的归一化版本,范围在 0 到 1 之间。
confidence anomaly_score 准确性的概率。该数值越接近 1,准确性越高。在运行中的检测器试用期内,由于其接触的数据有限,置信度较低 (< 0.9)。
entity 实体是特定类别字段值的组合。它包括类别字段的名称和值。在前面的示例中,process_name 是类别字段,process_3 等进程是该字段的值。 entity 字段仅在高基数检测器(您已选择类别字段的情况下)中存在。
model_id 识别模型的唯一 ID。如果检测器是单流检测器(没有类别字段),则它只有一个模型。如果检测器是高基数检测器(带有一个或多个类别字段),则它可能具有多个模型,每个实体一个。
threshold 检测器将数据点归类为异常的标准之一是其 anomaly_score 必须超过动态阈值。此字段记录当前阈值。

启用插补选项后,异常结果中会包含一个 feature_imputed 数组,显示由于数据缺失而修改了哪些特征。如果没有特征被插补,则此项会被排除。

在以下异常结果输出示例中,processing_bytes_max 特征被插补,如 imputed: true 状态所示

{
    "detector_id": "kzcZ43wBgEQAbjDnhzGF",
    "schema_version": 5,
    "data_start_time": 1635898161367,
    "data_end_time": 1635898221367,
    "feature_data": [
        {
            "feature_id": "processing_bytes_max",
            "feature_name": "processing bytes max",
            "data": 2322
        },
        {
            "feature_id": "processing_bytes_avg",
            "feature_name": "processing bytes avg",
            "data": 1718.6666666666667
        },
        {
            "feature_id": "processing_bytes_min",
            "feature_name": "processing bytes min",
            "data": 1375
        },
        {
            "feature_id": "processing_bytes_sum",
            "feature_name": "processing bytes sum",
            "data": 5156
        },
        {
            "feature_id": "processing_time_max",
            "feature_name": "processing time max",
            "data": 31198
        }
    ],
    "execution_start_time": 1635898231577,
    "execution_end_time": 1635898231622,
    "anomaly_score": 1.8124904404395776,
    "anomaly_grade": 0,
    "confidence": 0.9802940756605277,
    "entity": [
        {
            "name": "process_name",
            "value": "process_3"
        }
    ],
    "model_id": "kzcZ43wBgEQAbjDnhzGF_entity_process_3",
    "threshold": 1.2368549346675202,
    "feature_imputed": [
        {
            "feature_id": "processing_bytes_max",
            "imputed": true
        },
        {
            "feature_id": "processing_bytes_avg",
            "imputed": false
        },
        {
            "feature_id": "processing_bytes_min",
            "imputed": false
        },
        {
            "feature_id": "processing_bytes_sum",
            "imputed": false
        },
        {
            "feature_id": "processing_time_max",
            "imputed": false
        }
    ]
}

检测到异常时,结果将以以下格式提供:

{
  "detector_id": "fylE53wBc9MCt6q12tKp",
  "schema_version": 0,
  "data_start_time": 1635927900000,
  "data_end_time": 1635927960000,
  "feature_data": [
    {
      "feature_id": "processing_bytes_max",
      "feature_name": "processing bytes max",
      "data": 2291
    },
    {
      "feature_id": "processing_bytes_avg",
      "feature_name": "processing bytes avg",
      "data": 1677.3333333333333
    },
    {
      "feature_id": "processing_bytes_min",
      "feature_name": "processing bytes min",
      "data": 1054
    },
    {
      "feature_id": "processing_bytes_sum",
      "feature_name": "processing bytes sum",
      "data": 5032
    },
    {
      "feature_id": "processing_time_max",
      "feature_name": "processing time max",
      "data": 11422
    }
  ],
  "anomaly_score": 1.1986675882872033,
  "anomaly_grade": 0.26806225550178464,
  "confidence": 0.9607519742565531,
  "entity": [
    {
      "name": "process_name",
      "value": "process_3"
    }
  ],
  "approx_anomaly_start_time": 1635927900000,
  "relevant_attribution": [
    {
      "feature_id": "processing_bytes_max",
      "data": 0.03628638020431366
    },
    {
      "feature_id": "processing_bytes_avg",
      "data": 0.03384479053991436
    },
    {
      "feature_id": "processing_bytes_min",
      "data": 0.058812549572819096
    },
    {
      "feature_id": "processing_bytes_sum",
      "data": 0.10154576265526988
    },
    {
      "feature_id": "processing_time_max",
      "data": 0.7695105170276828
    }
  ],
  "expected_values": [
    {
      "likelihood": 1,
      "value_list": [
        {
          "feature_id": "processing_bytes_max",
          "data": 2291
        },
        {
          "feature_id": "processing_bytes_avg",
          "data": 1677.3333333333333
        },
        {
          "feature_id": "processing_bytes_min",
          "data": 1054
        },
        {
          "feature_id": "processing_bytes_sum",
          "data": 6062
        },
        {
          "feature_id": "processing_time_max",
          "data": 23379
        }
      ]
    }
  ],
  "threshold": 1.0993584705913992,
  "execution_end_time": 1635898427895,
  "execution_start_time": 1635898427803
}

请注意,结果中包含以下附加字段。

字段 描述
relevant_attribution 表示每个输入变量的贡献。所有归因的总和归一化为 1。
expected_values 每个特征的预期值。

检测器可能延迟检测到异常。例如:检测器观察到一组数据,该数据在“慢速周”(由三元组 {1, 2, 3} 表示)和“繁忙周”(由三元组 {2, 4, 5} 表示)之间交替。如果检测器遇到模式 {2, 2, X},其中它尚未看到 X 将取的值,则检测器会推断该模式是异常的。但是,它无法确定哪个 2 是原因。如果 X = 3,则第一个 2 是异常。如果 X = 5,则第二个 2 是异常。如果是第一个 2,则检测器将延迟检测到异常。

当检测器延迟检测到异常时,结果将包含以下附加字段。

字段 描述
past_values 触发异常的实际输入。如果 past_valuesnull,则归因或预期值来自当前输入。如果 past_values 不为 null,则归因或预期值来自过去的输入(例如,数据的先前两个步骤 [1,2,3])。
approx_anomaly_start_time 触发异常的实际输入的近似时间。此字段可帮助您了解检测器标记异常的时间。单流和高基数检测器都不会查询先前的异常结果,因为这些查询是昂贵的操作。对于可能具有许多实体的高基数检测器来说,成本尤其高。如果数据不连续,则此字段的准确性较低,并且检测器检测到异常的实际时间可能会更早。
{
  "detector_id": "kzcZ43wBgEQAbjDnhzGF",
  "confidence": 0.9746820962328963,
  "relevant_attribution": [
    {
      "feature_id": "deny_max1",
      "data": 0.07339452532666227
    },
    {
      "feature_id": "deny_avg",
      "data": 0.04934972719948845
    },
    {
      "feature_id": "deny_min",
      "data": 0.01803003656061806
    },
    {
      "feature_id": "deny_sum",
      "data": 0.14804918212089874
    },
    {
      "feature_id": "accept_max5",
      "data": 0.7111765287923325
    }
  ],
  "task_id": "9Dck43wBgEQAbjDn4zEe",
  "threshold": 1,
  "model_id": "kzcZ43wBgEQAbjDnhzGF_entity_app_0",
  "schema_version": 5,
  "anomaly_score": 1.141419389056506,
  "execution_start_time": 1635898427803,
  "past_values": [
    {
      "feature_id": "processing_bytes_max",
      "data": 905
    },
    {
      "feature_id": "processing_bytes_avg",
      "data": 479
    },
    {
      "feature_id": "processing_bytes_min",
      "data": 128
    },
    {
      "feature_id": "processing_bytes_sum",
      "data": 1437
    },
    {
      "feature_id": "processing_time_max",
      "data": 8440
    }
  ],
  "data_end_time": 1635883920000,
  "data_start_time": 1635883860000,
  "feature_data": [
    {
      "feature_id": "processing_bytes_max",
      "feature_name": "processing bytes max",
      "data": 1360
    },
    {
      "feature_id": "processing_bytes_avg",
      "feature_name": "processing bytes avg",
      "data": 990
    },
    {
      "feature_id": "processing_bytes_min",
      "feature_name": "processing bytes min",
      "data": 608
    },
    {
      "feature_id": "processing_bytes_sum",
      "feature_name": "processing bytes sum",
      "data": 2970
    },
    {
      "feature_id": "processing_time_max",
      "feature_name": "processing time max",
      "data": 9670
    }
  ],
  "expected_values": [
    {
      "likelihood": 1,
      "value_list": [
        {
          "feature_id": "processing_bytes_max",
          "data": 905
        },
        {
          "feature_id": "processing_bytes_avg",
          "data": 479
        },
        {
          "feature_id": "processing_bytes_min",
          "data": 128
        },
        {
          "feature_id": "processing_bytes_sum",
          "data": 4847
        },
        {
          "feature_id": "processing_time_max",
          "data": 15713
        }
      ]
    }
  ],
  "execution_end_time": 1635898427895,
  "anomaly_grade": 0.5514172746375128,
  "entity": [
    {
      "name": "process_name",
      "value": "process_3"
    }
  ],
  "approx_anomaly_start_time": 1635883620000
}

扁平化异常结果映射

在“自定义结果索引”窗格中选择“启用扁平化自定义结果索引”选项时,异常检测插件会将所有嵌套字段扁平化后保存到索引中。

索引中存储的嵌套字段使用以下扁平化规则。

字段 扁平化规则 嵌套输入示例 扁平化输出示例
relevant_attribution relevant_attribution_$FEATURE_NAME_data: $RELEVANT_ATTRIBUTION_FEATURE_DATA relevant_attribution : [{"feature_id": "deny_max1", "data": 0.07339452532666227}] relevant_attribution_deny_max1_data: 0.07339452532666227
past_values past_values_$FEATURE_NAME_data: $PAST_VALUES_FEATURE_DATA "past_values": [{"feature_id": "processing_bytes_max", "data": 905}] past_values_processing_bytes_max_data: 905
feature_data feature_data_$FEATURE_NAME_data: $FEATURE_DATA_FEATURE_NAME_DATA "feature_data": [{"feature_id": "processing_bytes_max", "feature_name": "processing bytes max", "data": 1360}] feature_data_processing_bytes_max_data: 1360
expected_values expected_values_$FEATURE_NAME_data: $EXPECTED_VALUES_FEATURE_DATA "expected_values": [{"likelihood": 1, "value_list": [{"feature_id": "processing_bytes_max", "data": 905}]}] expected_values_processing_bytes_max_data: 905
entity entity_$NAME_value: $ENTITY_VALUE "entity": [{"name": "process_name", "value": "process_3"}] entity_process_name_value: process_3

例如,当检测器延迟检测到异常时,扁平化结果将以以下格式显示:

{
  "detector_id": "kzcZ43wBgEQAbjDnhzGF",
  "confidence": 0.9746820962328963,
  "relevant_attribution": [
    {
      "feature_id": "deny_max1",
      "data": 0.07339452532666227
    },
    {
      "feature_id": "deny_avg",
      "data": 0.04934972719948845
    },
    {
      "feature_id": "deny_min",
      "data": 0.01803003656061806
    },
    {
      "feature_id": "deny_sum",
      "data": 0.14804918212089874
    },
    {
      "feature_id": "accept_max5",
      "data": 0.7111765287923325
    }
  ],
  "relevant_attribution_deny_max1_data": 0.07339452532666227,
  "relevant_attribution_deny_avg_data": 0.04934972719948845,
  "relevant_attribution_deny_min_data": 0.01803003656061806,
  "relevant_attribution_deny_sum_data": 0.14804918212089874,
  "relevant_attribution_deny_max5_data": 0.7111765287923325,
  "task_id": "9Dck43wBgEQAbjDn4zEe",
  "threshold": 1,
  "model_id": "kzcZ43wBgEQAbjDnhzGF_entity_app_0",
  "schema_version": 5,
  "anomaly_score": 1.141419389056506,
  "execution_start_time": 1635898427803,
  "past_values": [
    {
      "feature_id": "processing_bytes_max",
      "data": 905
    },
    {
      "feature_id": "processing_bytes_avg",
      "data": 479
    },
    {
      "feature_id": "processing_bytes_min",
      "data": 128
    },
    {
      "feature_id": "processing_bytes_sum",
      "data": 1437
    },
    {
      "feature_id": "processing_time_max",
      "data": 8440
    }
  ],
  "past_values_processing_bytes_max_data": 905,
  "past_values_processing_bytes_avg_data": 479,
  "past_values_processing_bytes_min_data": 128,
  "past_values_processing_bytes_sum_data": 1437,
  "past_values_processing_bytes_max_data": 8440,
  "data_end_time": 1635883920000,
  "data_start_time": 1635883860000,
  "feature_data": [
    {
      "feature_id": "processing_bytes_max",
      "feature_name": "processing bytes max",
      "data": 1360
    },
    {
      "feature_id": "processing_bytes_avg",
      "feature_name": "processing bytes avg",
      "data": 990
    },
    {
      "feature_id": "processing_bytes_min",
      "feature_name": "processing bytes min",
      "data": 608
    },
    {
      "feature_id": "processing_bytes_sum",
      "feature_name": "processing bytes sum",
      "data": 2970
    },
    {
      "feature_id": "processing_time_max",
      "feature_name": "processing time max",
      "data": 9670
    }
  ],
  "feature_data_processing_bytes_max_data": 1360,
  "feature_data_processing_bytes_avg_data": 990,
  "feature_data_processing_bytes_min_data": 608,
  "feature_data_processing_bytes_sum_data": 2970,
  "feature_data_processing_time_max_data": 9670,
  "expected_values": [
    {
      "likelihood": 1,
      "value_list": [
        {
          "feature_id": "processing_bytes_max",
          "data": 905
        },
        {
          "feature_id": "processing_bytes_avg",
          "data": 479
        },
        {
          "feature_id": "processing_bytes_min",
          "data": 128
        },
        {
          "feature_id": "processing_bytes_sum",
          "data": 4847
        },
        {
          "feature_id": "processing_time_max",
          "data": 15713
        }
      ]
    }
  ],
  "expected_values_processing_bytes_max_data": 905,
  "expected_values_processing_bytes_avg_data": 479,
  "expected_values_processing_bytes_min_data": 128,
  "expected_values_processing_bytes_sum_data": 4847,
  "expected_values_processing_time_max_data": 15713,
  "execution_end_time": 1635898427895,
  "anomaly_grade": 0.5514172746375128,
  "entity": [
    {
      "name": "process_name",
      "value": "process_3"
    }
  ],
  "entity_process_name_value": "process_3",
  "approx_anomaly_start_time": 1635883620000
}
剩余 350 字符

有问题?

想贡献?